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Recently we presented a new technique for numerical simulations of colloidal 
hard-sphere systems and showed its high efficiency. Here, we extend our calcu- 
lations to the treatment of both 2- and 3-dimensional monodisperse and 
3-dimensional polydisperse systems (with sampled finite Gaussian size distri- 
bution of particle radii), focusing on equilibrium pair distribution functions and 
structure factors as well as volume fractions of random close packing (RCP). 
The latter were determined using in principle the same technique as Woodcock 
or Stillinger had used. Results for the monodisperse 3-dimensional system show 
very good agreement compared to both pair distribution and structure factor 
predicted by the Percus-Yevick approximation for the fluid state (volume frac- 
tions up to 0.50). We were not able to find crystalline 3d systems at volume frac- 
tions 0.50--0.58 as shown by former simulations of Ree et al. or experiments of 
Pusey and van Megen, due to the fact that we used random start configurations 
and no constraints of particle positions as in the cell model of Hoover and Ree, 
and effects of the overall entropy of the system, responsible for the melting and 
freezing phase transitions, are neglected in our calculations. Nevertheless, we 
obtained reasonable results concerning concentration-dependent long-time self- 
diffusion coefficients (as shown before) and equilibrium structure of samples in 
the fluid state, and the determination of the volume fraction of random close 
packing (RCP, glassy state). As expected, polydispersity increases the respective 
volume fraction of RCP due to the decrease in free volume by the fraction of 
the smaller spheres which fill gaps between the larger particles. 

KEY WORDS:  Brownian dynamics simulations; colloidal hard spheres; 
polydispersity; random close packing. 

~ Institut fiir Physikalische Chemic, Johannes Gutenberg-Universit~it Mainz, 55099 Mainz, 
Germany. 

2 To whom correspondence should be addressed. 

1007 

0022-4715/94/1200-1007507.00/0 �9 1994 Plenum Publishing Corporation 



1008 Schaertl and Sillescu 

1. I N T R O D U C T I O N  

Colloidal hard spheres provide an experimental system of major interest for 
many researchers. This is mainly caused by their analogy to simple atomic 
systems, with the important advantage of easy access to dynamics and 
structure of the magnified "quasiatomic" samples by common experimental 
techniques, such as, for example, dynamic light scattering/l 5~ video 
microscopy, ~6-9~ ultramicroscopy, t~~ or SAXS. tl3"141 Although modern 
techniques of polymer synthesis such as suspension, emulsion, and 
microemulsion polymerization 1~5-18~ yield spherical colloidal particles in a 
size range of radius 10-1000 nm, the uniformity of these products is 
certainly not perfect as in true atomic systems. It is also not possible to 
prepare samples with adjusted definite polydispersities or to characterize 
the size and polydispersity of a colloidal system by analytical methods such 
as dynamic light scattering or electron microscopy without uncertainties. 
Since polydispersity truly influences the behavior of the sample compared 
to the ideal monodisperse system it usually is supposed to represent, it is 
necessary to find some way for detailed analysis of these effects on 
structure, dynamics, and phase behavior. As mentioned before, quantitative 
treatment of polydispersity effects by experiment is, due to the difficulties 
in preparation of very well-defined systems, nearly impossible, whereas this 
subject is, in most cases, by far too complicated for theoretical analytical 
solutions. Only numerical simulations seem to provide a technique which 
allows for investigation of all qualities of well-defined systems. 

In the last 25 years, there have been many interesting developments 
concerning techniques for the numerical treatment of model systems, 
supported by a vast advance in computer technology. In principle, there 
exist three different approaches: the Monte Carlo method (MC),  (L9'2~ the 
molecular dynamics technique (MD), (2~ and the Brownian dynamics 
algorithm (BD), which is based on the position Langevin equation of 
colloidal suspensions derived by Ermak and McCammon/23.241 Many 
investigations of charged colloidal systems based on MC ~25"26~ or BD ~27-291 
are found in the literature. Due to the nonanalytic form of the interaction 
pair potential of colloidal hard spheres, it is impossible to treat these 
systems in a numerically exact way using standard Brownian dynamics 
techniques. Recently, two different approaches to this problem have been 
published by Cichocki and Hinsen ~3~ and Schaertl and SillescuJ 32~ We 
have shown elsewhere t3z~ that, while both algorithms yield the same results 
concerning particle dynamics in the extrapolated limit of infinitely short 
calculation time steps, which also correspond very well to theoretical ~33~ 
and experimental t3"9'34J predictions, our algorithm is more efficient 
considering convergence and equilibration, especially at very high particle 
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volume fractions ~b>0.50. The details of this algorithm with accurate 
analysis of convergence as well as errors at finite calculation time steps are 
given in ref. 32. We have discussed the dynamics on different time scales 
and concentrations in monodisperse 2- and 3-dimensional hard-sphere 
suspensions and the effect of sample dimensionality, introducing a simple 
geometrical model to enable comparison of particle concentrations of 
samples with different dimensionality. 

In this paper, we concentrate on the equilibrium pair distribution and 
structure factor of monodisperse 2- and 3-dimensional samples as well as 
3-dimensional systems with Gaussian particle radius distribution. The 
structure factors are calculated by n-dimensional discrete Fourier transform 
of the sampled density profile which is calculated from the stored 
configuration data of the particles. Results of the 3-dimensional 
monodisperse systems are compared with theoretical predictions from the 
Percus-Yevick approximation ~35-4~ which should be valid for description 
of the structure of colloidal hard-sphere systems at not too high particle 
concentrations (~b < 0.40). Crystallization should be found in the concentra- 
tion regime if=0.50 (freezing point) to ~b=0.54 (melting point) as pre- 
dicted by simulations from Hoover and Ree ~41~ and experiments from 
Pusey and van Megen) 42J However, no crystallization occurs in our 
simulations since the systems are not in thermodynamic equilibrium, i.e., 
the calculations started from random initial configurations and, at very 
high concentrations, structural relaxation might be too slow to reach the 
equilibrated state within the finite time of our calculations. The effect of dif- 
ferent crystalline and random initial configurations upon the structure after 
long simulation times will be treated in a future publication. Here, it should 
be noted that the metastable glassy state which corresponds to a random 
close-packed (RCP) structure could not be obtained using a FCC initial 
configuration at ~b/> 0.60. We will present a simple technique based on our 
BD algorithm and the principle of simulation of continuously growing 
spheres up to random close-packed conditions used in earlier work of 
W o o d c o c k  143'44) and Lubachevsky and Stillinger 145~ which enables us to 
determine the volume fraction of the RCP dependent on the polydispersity 
of the system. These results may be very important for interpretation of 
experimentally measured volume fractions at the glass transition compared 
with theoretically expected values. We will also present pair distribution 
functions and structure factors of polydisperse systems and give a brief 
discussion of the dependence of long-time self-diffusion coefficients on 
polydispersity and particle volume fractions. 
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2. BASIC  C O N C E P T S  

2.1. A l g o r i t h m  

Our computer algorithm for numerical treatment of colloidal hard- 
sphere suspensions has been presented in detail elsewhere, t32~ Here, we just 
wish to give a brief summary of the principal idea: 

We start our simulations of N =  729 particles with periodic boundary 
conditions and mean particle radius R=0.5/~m from randomly chosen 
initial configurations and proceed as follows in each of the successive time 
steps z (fixed to 0.5 msec for all simulations presented in this paper), 
calculating the time development of our system for a formal duration of 
20 sec after 2 sec of equilibration: 

1. Each particle is moved by the distance (2Doz) ~ in one of the ran- 
domly chosen directions along each Cartesian axis (+x ,  +y,  +__z), 
where Do is the diffusion coefficient of the system without 
interactions as given by the Stokes-Einstein equation 
(=4.4 x 10 -13 m2/sec in water at 20~ 

2. Any particle overlap detected after the move is corrected by 
pairwise shifting of the interfering particles up to their touching 
distance. 

We store only 100 particle configurations with a time spacing of 0.2 sec. 
These data are used for later evaluation and calculation of physical 
properties such as time-dependent and long-time self-diffusion coefficients, 
pair distribution functions, or static structure factors. 

The algorithm for determination of the RCP volume fraction is based 
on this simple technique: starting at a medium volume fraction of ~b = 0.45, 
steps 1 and 2 are repeated N=4000  times until equilibration is reached, 
which corresponds to a time development of the system of Nz = 2 sec. In 
the equilibrium state, the number of touching (or slightly overlapping!) 
particles is stored as a function of volume fraction. Before the next run, 
which starts from the preceding equilibrium configuration, each particle 
radius is increased by a factor of 1.005, which leads to an effective increase 
of the particle volume fraction by a factor of 1.015. This procedure is 
repeated until the number of touching (and overlapping) particles exceeds 
723, and the corresponding final effective volume fraction is defined as the 
particle concentration of the RCP. Later, we will present a plot of the 
number of touching particles as a function of volume fraction for samples 
with radius polydispersity 20%. We will also discuss the dependence of 
~bRC P on the standard deviation a of the Gaussian polydispersity profile. 
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2 .2 .  G a u s s i a n  P o l y d i s p e r s i t y  P r o f i l e  

The Gaussian polydispersity profile of particles with mean radius r 0 
and standard deviation a is given by 

P(r) = C exp[  - ( r -  ro)2/2a 2] (1) 

In our  simulations, we treated particle ensembles with finite particle 
number  of N =  729 and polydispersities a/ro ranging from 0.01 to 0.40. To 
obtain comparable results, we sampled the polydispersity profile in the 
range ro ._  2e with sample spacing 0.2a, distributing the spheres on these 
sample cells according to their statistical weight. Since, due to cutoff effects, 
this profile does not represent the true Gaussian profile, we calculated the 
volume fractions for Gaussian profiles with the same a in order to get a 
semiquantitative estimate of these effects. A simple approximation of the 
volume fraction of polydisperse samples for small a was given by Pusey(46): 

~b = ~bo[1 + 3(a/ro) 2] (2) 

In Table I we present the volume fractions of systems with different 
Gaussian-shaped polydispersity profiles. Here A corresponds to the results 
given by Eq. (2), B represents a profile of > 100,000 spheres sampled in the 
range + 5 a  with sampling resolution 0.02a, C corresponds to >200,000 
spheres sampled in the range + 2 a  with resolution 0.01a, and D represents 
the profile of 729 spheres used in our  simulations (___2a, Ar=0 .2a ) .  The 
results B - D  were determined from numerical calculations. 

At not too large polydispersities (a < 0.20to) the results of Eq. (2) (A) 
correspond very well to the most realistic profile (B). Table I also shows 
very strong cutoff effects for polydispersity profiles C and D, especially at 
polydispersities exceeding 0.15, whereas the different sampling rate and 
particle number  of ensembles C and D have no dramatic effect (even at 
very high polydispersities a=0 .40ro! ) .  It is obvious that neglect of the 
intervals from 2a to 5a and from - 5 a  to - 2 a  in C and D leads to 

Table I. Effects of Various Sampling of Gaussian Polydispersity Profiles on 
Respective Volume Fractions for the Example ~0=0 .64  ~ 

air 0.010 0.050 0.075 0.100 0.150 0.200 0.250 0.300 0.350 0.400 
~a 0.640 0.645 0.652 0.659 0.683 0.717 0.760 0.813 0.875 0.947 
~S 0.640 0.645 0.651 0.659 0.683 0 .716 . . . .  
~b c 0.640 0.644 0.648 0.655 0.673 0.699 - -  0.773 - -  0.877 
~b D 0.640 0.644 0.650 0.656 0.676 0.703 0.739 0.782 0.833 0.893 

~b D corresponds to Gaussian-shaped profiles used in our simulations. See text for explanation 
of A-D. 
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diminished volume fractions, because the symmetric radius distribution of 
the Gaussian profile corresponds to an asymmetric volume distribution, 
thus shifting the mean value of ~b. A symmetric cutoff of the radius distribu- 
tion, which does not affect the mean radius of particles, thus affects the 
mean volume of particles and consequently leads to a distinct decrease of 
the respective volume fraction. We will keep in mind these findings when 
we discuss our results concerning polydispersity effects on the volume 
fraction of RCP, representing the glassy state, for samples with Gaussian 
size distribution. 

We also should mention that, concerning our calculations without 
particle growth and polydispersities a/ro up to 0.10, the formal volume 
fraction ~b o (corresponding to monodisperse systems with identical box 
dimensions as for polydisperse systems, and particle radius equal to the 
mean radius, ro) given in the plots and discussions below does not repre- 
sent the true volume fraction of the polydisperse system, defined as ~t~ = 
Z Vi/Vbo~, i= 1 ..... N (Vi is the volume of sphere i, Vbo~ the volume of the 
simulation box, N =  729). This is due to the fact that, for practical reasons, 
we chose the box dimensions of all systems according to the monodisperse 
reference system. Thus, polydisperse samples with the same box size and 
mean particle radius as their corresponding monodisperse system have a 
volume fraction exceeding the monodisperse value due to the same reasons 
as discussed above. Nevertheless, this increase is less than 2 % and does not 
affect the structural equilibrium properties, pair distribution G2(r) and 
static structure factor S(q). 

On the other hand, in the case of dynamics characterized by the 
concentration dependence of the long-time self-diffusion coefficient DL, we 
use the true particle volume fractions ~b o for interpretation of the results. In 
the steady growth simulations used to determine the RCP concentration 
we also will use these true particle volume fractions of the polydisperse 
samples. It should be noted that the effect of remaining particle overlaps in 
the stored particle configurations and the resulting decrease of the effective 
volume fractions, taken into account in detail in our earlier publication, ~32) 
this time is completely neglected. This reduction of r strongly depends on 
concentration and is up to ~b = 0.58 below 2%, so it should not influence 
our numerical results concerning the concentration dependence of S(q) and 
G2(r) in this regime. On the other hand, during the determination of ~bac P 
by the steady growth algorithm, we are interested in the number of touching 
(and overlapping) spheres, which should hardly be affected by remaining 
particle overlaps and the corresponding reduction of the effective volume 
fraction. This can easily be imagined by the fact that the random packed 
structure of the spheres is not influenced by the particle overlaps, but, 
concerning single-particle dynamics, the particle overlaps (and corre- 
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sponding decreased effective particle radii) could be interpreted as a kind 
of slight compressibility of some of the "hard spheres," which certainly 
influences the mean particle mobility (DL). 

2.3. Numerical Determination of Ga(r) and S(q) 

The equilibrium structure of a given system can be characterized both 
by its pair distribution function G2(r) and its static structure factor S(q), 
the latter being simply the Fourier transform. Whereas in experiment as 
well as theory it is by far easier to get the data in Fourier space, for 
example, by simple scattering experiments such as  SAXS (13'14) or static 
light scattering, computer simulations provide direct access to G2(r) via the 
particle configuration data. Obtaining S(q) from the small, finite system of 
our simulation is a quite deficient and complicated procedure, as we will 
show further below. An attempt to obtain S(q) in a direct manner by dis- 
crete Fourier transformation (FFT) t47"481 of G2(r) failed since the statistical 
accuracy of the G2(r) data was insufficient (average over only 100 
configurations) and there exist certain artifacts produced by the discrete 
FFT algorithm. Thus, we chose to calculate the n-dimensional structure 
factor by n-dimensional Fourier transformation ( n = 2  or 3) of the 
n-dimensional space density which has been determined from the stored 
particle configurations. Q-space-averaging of this n-dimensional structure 
factor and renormalization with respect to the height of the first maximum 
and the large-q limit yielded our normalized S(q). Table II gives the 
resulting q range and q resolution at different particle volume fractions. 

In the case of monodisperse 3D samples, we will compare our results 
of G2(r) and S(q) with predictions from the Percus-Yevick equation. 135-4~ 
Numerical PY solutions for G2(r) have been determined by Throop and 
Bearman, ~38~ using numerical evaluation of the exact solution of the PY 
equation for the radial distribution function of a classical hard-sphere fluid 
found by Wertheim. t37) These results are tabulated in ref. 38 for the regime 
r/(2R)= 1 - 3 . 95  (R=hard-sphere radius) and volume fractions ranging 
from 0.052 to 0.576. We also have calculated S(q) in the PY approxima- 

Table II. q Range ( f rom Zero to  M a x i m u m  q Value qm) and Resolution &q of  
Calculated S(q) for Dif ferent  3D Volume Fractions" 

~o 0.10 0.20 0.30 0.40 0.50 0.60 
q= 2.05 x 104 2.58 x 104 2.95 x 104 3.25 x 104 3.50 x 104 3.72 x 104 

Aq 640 806 923 1016 1094 1163 

O q data in c m - ' .  
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tion, according to an analytical expression derived by van Beurten and 
vrij. c49J Although PY approximations may yield invalid results at very high 
volume fractions (~b~>0.40), nevertheless these deviations are within the 
uncertainty of our G2(r) data, which are comparably noisy, due to the 
statistical averaging over only 100 configurations. Thus we have chosen to 
compare our results, on a qualitative level, with the PY predictions. Due 
to the noisiness of our data we also omitted a quantitative comparison with 
the predicted contact values Gz(r=2R). Concerning the polydisperse 
systems, unfortunately we have not been able to find appropriate theo- 
retical predictions corresponding to the polydispersity distributions and 
very high concentrations (~b/> 0.50) treated in our simulations. 

3. RESULTS 

3.1. Equilibrium Structure of Monodisperse 3D and 
2D Samples 

Figures la and lb present our results for Gz(r) of monodisperse 
3-dimensional hard-sphere systems at volume fractions ~b = 0.366 and 0.471 
in comparison with theoretical PY predictions, c38~ In both cases simulation 
data correspond very well to the theoretical predictions. So we can state 
that our simple (but effective) algorithm describes a realistic system of 
hard-sphere colloids with respect to hard-sphere interactions and their 
effects on equilibrium structure. It is remarkable that even for samples at 
higher concentrations the short equilibration period of 2 see seems to be 
sufficient for the system to relax from randomly chosen particle positions 
to its equilibrium configurations. Nevertheless, one should bear in mind 
that our algorithm converges to a stationary state within finite evolution 
time, which is not necessarily the thermodynamic equilibrium, but may be 
metastable. Unlike Monte Carlo simulations searching for the minimum of 
free energy, ~4~) the shift procedure of our algorithm optimizes sphere 
packing with minimum overlap. Since no many-body correlations are 
considered, simulation runs may end up in random packing even for 
systems that should crystallize soon. 

Figure 2 gives an example of Gz(r) at higher concentration ~b = 0.576, 
where crystallization occurs in experiment t42) as well as in simulations 
which take into account thermodynamic properties of the system, t4~ The 
second solid line with two peaks in the regime r=l .75-2.25/~m 
corresponds to the simulation of a 2-dimensional sample with area fraction 
~bA =0.80. At this concentration, the 2D sample shows a hexatic quasi- 
crystalline structure which has been proved by viewing the real-space 
configuration of the sample. Comparing the PY result at this concentration 
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with our 3D simulation data (small squares), we find distinct deviations. 
Our Brownian dynamics (BD) G2(r) shows two peaks at r =  1.75 and 
2.0/~m, which seems to indicate some kind of hexagonal ordering for the 
3-dimensional system at 4 = 0.576, corresponding perhaps to a disordered 
crystalline FCC phase as predicted in the literature} 4~'42) Nevertheless, 
these small effects are still rather different from the expected G2(r) of the 
true FCC crystalline systems. Once again, we emphasize that our BD algo- 
rithm yields realistic equilibrium structures at volume fractions up to 

= 0.50, where the PY approximation for colloidal hard-sphere systems 
still should be valid within the numerical accuracy of our G2(r), but it 
seems that it cannot be used for investigation of the crystalline phase 
behavior in the concentration regime 0.50 < ~ < 0.59 (421 if random initial 
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Fig. t. (a) Comparison of G2(r) from numerical PY solutions t~s~ (line) with simulation 
results (symbols) for a monodisperse 3D System with # =0.366, simulation G2(r) averaged 
over 100 configurations. (b) Same, with ~=0.471. 
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Fig. 2. G2(r) from pyr (smooth line) and 3D simulation (symbols) at r =0.576. For com- 
parison, Gz(r) from simulation of a 2-dimensional system with ffa = 0.80 (jagged line with 
three maxima) is included. 

configurations are used, at least not within the short evolution time of 
about 25sec used so far. On the other hand, we should be able to 
investigate the glass transition of hard-sphere systems, which is expected in 
the regime 0.60 < ~ < 0.64 and is based on the freezing in of translational 
motion in samples with RCP structure. This glassy state does not depend 
on thermodynamic properties, but should simply exist due to the geometri- 
cal constraints of the random close-packed structure. It should be noted 
that Woodcock, using a MD algorithm with steady particle growth, c43~ also 
was not able to find crystallization of his samples, but could identify the 
glass transition of hard-sphere systems. Our investigations of the glassy 
state and its dependence on polydispersity of the sample will be presented 
further below. 

In Figs. 3a and 3b results of S(q) for monodisperse 3-dimensional 
samples at volume fractions 0.30 and 0.50 are presented in comparison with 
data calculated from an analytical PY equation. ~491 As stated above, the 
equilibrium structure of our systems corresponds very well to the theoreti- 
cal predictions at concentrations q~ ~< 0.50. 

At the end of this section we present results concerning the structure 
of 2-dimensional monodisperse hard-sphere systems. We have already 
presented G2(r) at 4A=0.80 (cf. Fig. 2). Figure4 shows S(q) of a highly 
crystalline hexatic structure at crystalline close packing (q~A = 0.90). In this 
case crystallization is simply caused by geometrical constraints and less 
dependent upon higher-order correlations, which are neglected in our 
calculations. At this point, let us emphasize that of course our systems are 
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thermodynamically stable in the sense of having constant temperature 
(which was shown from the behavior of short-time diffusion (32)) and 
exhibiting no convection flux. 

3.2. Equil ibrium Structure of Polydisperse 3D Samples 

Figures 5a and 5b show plots of Gdr) at volume fractions ~o = 0.50 
and ~o=0.60 for monodisperse systems and systems with polydispersity 
a/r0=0.10. Whereas the amorphous state (~o=0.50) exhibits no sizable 
differences between monodisperse and polydisperse systems, G2(r) shows 
strong deviations at @o=0.60. For g/ro--0, we find two peaks at 
r =  1.7-2.1 pm, which may indicate the strongly disordered FCC structure 
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for a monodisperse 3D sample with (a) @ =0.30 and (b) @ = 0.50. 
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mentioned already for ~o = 0.576 (Fig. 2). This double peak structure is not 
seen in the polydisperse system. Furthermore, the amplitudes of the oscilla- 
tions of G2(r) are diminished, meaning that the spatial regime of the shell 
of next neighbors is less defined than in the monodisperse system. There 
also is a shift of the first maximum toward smaller values of r, which 
corresponds to the possibility of smaller next-neighbor distances caused by 
the fraction of smaller particles in our polydisperse sample. 

Next, let us consider the results for S(q) given in Figs. 6a and 6b. For 
practical reasons nonrenormalized S(q) are used. Note that, due to the 
insufficient q resolution, we are not able to detect a significant shift of the 
first maximum in either case. At @ = 0.50 a polydispersity of a/ro = 0.05 has 
only slight effects on the first and second maxima of S(q), and a/ro~>0.10 
is needed to obtain significant deviations. In the system with higher concen- 
tration, ~o = 0.60, polydispersities as small as alto =0.05 lead to similar 
deviations in S(q) as for a / to=0.10  in the former. In general, larger 
polydispersities result in reduction of the peak amplitudes of S(q), which 
corresponds to a less developed structure and definition of the spatial 
nearest-neighbor regime as stated above. These reasonable results 
correspond to common theoretical (5~ and experimental cSz) findings. In 
the literature, a polydispersity of a/ro >1 0.06 is supposed to be sufficient to 
inhibit crystallization of hard-sphere systems. (53'54J 

In Table III  we show the effect of polydispersity on reduced long-time 
self-diffusion coefficients DL/D o as calculated according to (32) 

DL = (rZ(At))/(6 At), At = 5 sec (3) 
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Fig. 4. S(q) determined from simulation of a monodisperse 2-dimensional system at crys- 
talline close packing (~A = 0.90). 
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In all cases, Do was chosen according to the monodisperse reference 
system, because in the case of small radius polydispersities below 10 % this 
value corresponds very closely to the Stokes-Einstein diffusion coefficient 
averaged over all particles of the polydisperse ensemble. Correspondingly, 
in every case the mean squared displacements used in Eq. (3) were deter- 
mined from averaging over all particles, whereas concerning the Brownian 
motion of each particle, its actual radius is used for calculation of the 
Stokes-Einstein diffusion coefficient, which governs its random displace- 
ment during the elementary calculation step. Although there seems to be a 
small deviation in DL/D o with increasing polydispersity at larger volume 
fractions, this is only due to the increase of particle volume fractions in the 
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polydisperse system (see Table I, row D). For comparison, Table IV gives 
the true volume fractions fro of our systems with Gaussian-shaped 
polydispersity. 

It should be noted, as stated above, that the box dimensions of our 
simulated systems were chosen according to the monodisperse systems with 
volume fractions ~o. In the polydisperse systems the same box size and 
mean particle radius are used, which leads to an effectivelY increased 
volume fraction (see above). The data given in Table III show that small 
radius polydispersities below 10 % (tr/ro = 0.10) have no effect on long-time 
particle mobility (DL) at volume fractions @0<0.60. In the case of 
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Fig. 6. (a) S(q) (unnormalized, see text) from simulations of 3-dimensional systems with 
polydispersities tr/r o = 0.00 (solid line), 0.05 (dotted line), and 0.10 (dash-dotted line) and for- 
mal @0=0.50. (b) S(q) from 3D systems with a/ro=O.O0 (solid line), 0.01 (dotted line), and 
0.05 (dash-dotted line) and formal @o = 0.60. 
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Table III. Reduced Long-Time Self-Diffusion Coefficients of 
Polydisperse Systems" 

1021 

~o 0.10 0.20 0.30 0.40 0.50 0.60 
Dt.(a=O.OO)/Do 0.83 0.67 0.50 0.34 0.16 0.015 
DL(a = 0.02)/Do 0.83 0.67 0.50 0.34 0.16 0.014 
DL(a=O.O6)/D o 0.84 0.67 0.50 0.34 0.16 0.010 
DL(a=O.IO)/D o 0.84 0.68 0.49 0.33 0.15 0.009 

~D0=4.4• 10-t3m-'sec -1. 

~bo=0.60, there is a decrease of D L from samples with a/ro=O.O0 to 
a/ro = 0.06 which is caused by the increase of the true volume fractions ~bt~ 
with increasing polydispersity tr (see Table IV). On the other hand, no 
decrease in particle mobility is found comparing tr/ro=O.06 and 0.10, 
al though the true volume fraction of the system with higher polydispersity 
is significantly larger. This can be understood from the fact that the smaller 
particles of our  Gaussian size distribution need less free volume for single- 
particle motion than the particles of a comparable monodisperse system 
because of their smaller hard-sphere radius. Thus, the long-time self-diffu- 
sion coefficient of polydisperse systems, which is calculated as an average 
value over all spheres of the polydisperse ensemble, using Do according to 
the monodisperse reference system, is larger than that of a monodisperse 
sample with equal true volume fraction ~o- In general, samples with higher 
degrees of polydispersity have larger volume fractions of close packing due 
to the possibility of smaller particles to "fill the gaps" between the larger 
ones. These effects of polydispersity on the random close-packed structure 
will be discussed in more detail in the next section. 

3.3.  D e t e r m i n a t i o n  o f  ~RCP o f  Po lyd isperse  S y s t e m s  

We used the steady growth algorithm in association with our technique 
of numerical treatment of colloidal hard-sphere interactions, described 

Table IV. Increase of True Volume Fraction q)O Depending on 
Polydispersity a ~ 

~0 = 0.100 0.200 0.300 0.400 0.500 0.600 
a = 0.02 0.100 0.200 0.300 0.400 0.500 0.601 
a = 0.06 0.101 0.202 0.303 0.404 0.504 0.605 
a = 0.10 0.102 0.205 0.307 0.410 0.512 0.615 

~ Given are various ~0 and corresponding ~t~ (cir. Table I). 
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Fig. 7. Concentration dependence of the fraction of touching spheres, N(T)/N, for systems 
with polydispersity a/r o = 0.20. 

above, to determine the volume fraction of random close packing of 
samples with various degrees of polydispersity ranging from a/ro = 0.00 to 
0.40. Figure 7 shows the concentration dependence of the number  of 
touching spheres for a system with a/ro = 0.20. At high concentrations, the 
asymptotic approach to 100 % overlapping particles is very slow; thus it is 
difficult to determine the volume fraction of RCP without uncertainties. We 
have defined as ~bRcv the volume fraction where no more increase was 
found in the number of touching particles N(r). At this concentration, N(r)  
was always larger than 723, giving a close-packed state of 99.2% of the 
sample, which seems to be sufficient within numerical error. The corre- 
sponding uncertainty of (bRC P is estimated to be of the order of about  
+0.01. Table V gives a summary of our  results of ~bRC v for various values 
of cr/ro. 

As expected, we find a strong increase of ~bac P with increasing a, 
caused by the filling of the gaps of the smaller fraction of particles, which 
reduces the free volume. This effect should be considered for interpretation 
of experimental data on the glass transition of nonuniform samples. Effects 
of polydispersity seem to be negligible, within experimental uncertainties of 
5 %, for samples with a/ro up to 0.05. Since many systems in experimental 

Table V. Random Close Packing of Polydisperse Samples 

a 0.00 0.02 0.05 0.075 0.10 0.15 0.20 0.25 0.30 0.35 0.40 
~bRc v 0.64 0.65 0.66 0.66 0.67 0.68 0.68 0.69 0.71 0.74 0.78 
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practice have larger polydispersities, our calculations may provide some 
useful hints concerning data analysis of results that appear unexpected 
from the point of view of monodisperse samples. 

4. C O N C L U S I O N S  

We have shown that our new algorithm for the treatment of hard- 
sphere interactions in Brownian dynamics simulations 19"321 provides also 
efficient ways to find the equilibrium structure for volume fractions ~b < 0.50 
as was shown by comparison of G2(r) and S(q)  with the Percus-Yevick 
approximation (Figs. 1 and 3). In the crystalline phase transition regime, 
0.50 <~b < 0.54, our algorithm yields partial hexagonal or FCC ordering 
(Fig. 2) when starting from random initial particle positions within finite 
evolution time (the effect of different initial configurations upon the 
resulting structure and dynamics will be treated elsewherelS~). We have 
also simulated polydisperse systems using a discrete approximation to a 
Gaussian distribution of sphere radius. In the fluid state (~bo<0.50), the 
influence of polydispersity upon G2(r) and S(q) is almost negligible for 
tr/ro~<0.10. At ~bo>/0.5, the partial hexagonal ordering seen in 
monodisperse samples is blurred and becomes undetectable for a/ro = 0.10 
(Fig. 5). The volume fractions at random close packing, ~bRC p, are found to 
increase with increasing polydispersity as expected. The average long-time 
self-diffusion coefficient D/_ is relatively independent of ~ if normalized to 
Do and ~bo of the corresponding monodisperse system, since the decrease 
due to large ~b o (see Table I) is balanced by the increase due to the higher 
mobility of a system "lubricated" by the small spheres of the size 
distribution. 

A C K N O W L E D G M E N T  

Support by the Fonds der Chemischen Industrie is gratefully acknowl- 
edged. 

R E F E R E N C E S  

I. M. M. Kops-Werkhoven and H. M. Fijnaut, J. Chem. Phys. 77:2242 (1982). 
2. A. van Veluven, H. N. W. Lekkerkerker, C. G. de Kruif, and A. Vrij, Z Chem. Phys. 

89:2810 (1988). 
3. W. van Megen and S. M. Underwood, J. Chem. Phys. 91:552 (1989). 
4. V. Degorgio, R. Piazza, M. Corti, and J. Stavans, J. Chem. Soc. Faraday Trans. 87:431 

( 1991 ). 



1024 Schaertl and Sillescu 

5. E. Bartsch, M. Antonietti, W. Schupp, and H. Sillescu, J. Chem. Phys. 97:3950 (1992). 
6. C. A. Murray and D. H. van Winkle, Phys. Rev. Lett. 58:1200 (1987). 
7. W. Schaertl, Ph.D. thesis, Mainz University (1992). 
8. A. Kasper, Diploma thesis, Mainz University (1993). 
9. W. Schaertl and H. Sillescu, J. Colloid Interface Sci. 155:313 (1993). 

I0. A. Kose, M. Ozaki, K. Takano, Y. Kobayashi, and S. Hachisu, J. Colloid Interface Sci. 
44:330 (1973). 

11. R. Williams and R. S. Crandall, Phys. Lett. A 48:225 (1974). 
12. H. Yoshida, K. Ito, and N. Ise, J. Am. Chem. Soc. 112:592 (1990). 
13. S. Stoelken, Ph.D. thesis, Mainz University, in preparation. 
14. E. B. Sirota, H. D. Ou-Yang, S. U. Sinka, P. M. Chaikin, J. D. Axe and Y. Fujii, Phys. 

Rev. Lett. 62:1524 (1989). 
15. E. B. Bradford and J. W. Vanderhoff, J. AppL Phys. 26:864 (1955). 
16. J. W. Vanderhoff, Prepr. Am. Chem. Soc. Div. Org. Coat. Plast. 24:223 (1964). 
17. M. Antonietti, W. Bremser, D. Mfischenborn, Ch. Rosenauer, B. Schupp, and M. Schmidt, 

Macromolecules 24:6636 ( 1991 ). 
18. V. Frenz, Ph.D. thesis, Mainz University, in preparation. 
19. K. Binder, Monte Carlo Methods in Statistical Physics (Springer, 1986). 
20. H. Gould and J. Tobochnik, An Introduction to Computer Simulation Methods, Parts 1 

and 2 (Addison-Wesley, 1988). 
21. B. J. Alder and T. E. Wainwright, J. Chem. Phys. 31:459 (1960). 
22. L. Verlet, Phys. Rev. 159:98 (1967). 
23. D. L. Ermak, J. Chem. Phys. 62:4189/4197 (1975). 
24. D. L. Ermak and J. A. McCammon, J. Chem. Phys. 69:1352 (1978). 
25. M. O. Robbins, K. Kremer, and G. S. Grest, J. Chem. Phys. 88:3286 (1988). 
26. N. Pistoor and K. Kremer, Prog. Colloid Polymer Sci. 81:184 (1990). 
27. H. Lfwen and G. Szamel, to be published (1993); H. L6wen, private communication. 
28. R. Klein, W. Hess, and G. N~gele, Physics of  Complex and Supramolecular Fluids (Wiley, 

New York, 1987). 
29. I. Snook and W. van Megen, J. Colloid Interface Sci. 100:194 (1984). 
30. B. Cichocki and K. Hinsen, Physica A 166:473 (1990). 
31. B. Cichocki and K. Hinsen, Physica A 187:133 (1992). 
32. W. Schaert and H. Sillescu, J. Star. Phys. 74:687 (1994). 
33. M. Medina-Noyola, Phys. Rev. Lett. 60:2705 (1988). 
34. S. M611er, Ph.D. thesis, Mainz University, in preparation. 
35. J. K. Percus and G. L. Yevick, Phys. Rev. 110:1 (1958). 
36. E. Thiele, J. Chem. Phys. 39:474 (1963). 
37. M. S. Wertheim, Phys. Left. 10:E501 (1963). 
38. G. Throop and R. J. Bearman, J. Chem. Phys. 42:2408 (1965). 
39. W. R. Smith and D. Henderson, Mo/. Phys. 19:411 (1970). 
40. D. Henderson and E. W. Grundke, J. Chem. Phys. 63:601 (1975). 
41. W. G. Hoover and F. H. Ree, J. Chem. Phys. 49:3609 (1968). 
42. P. N. Pusey and W. van Megen, Nature 320:340 (1986). 
43. L. V. Woodcock, J. Chem. Soc. Faraday II 72:1667 (1976). 
44. L. V. Woodcock, Ann. N. Y. Acad. Sci. 37:274 (1981). 
45. B. D. Lubachevsky, F. H. Stillinger, and E. N. Pinson, J. Star. Phys. 64:501 (1991). 
46. P. N. Pusey, In Light Scattering in Liquids and Macromolecular Solutions (Plenum Press, 

New York, 1980). 
47. W. K. Pratt, Digital Image Processing (Wiley, 1978). 
48. R. W. Ramirez, The FFT (Tektronix, New Jersey, 1985). 



Brownian Dynamics of Colloidal Hard Spheres 1025 

49. P. van Beurten and A. Vrij, J. Chem. Phys. 74:2744 (1981). 
50. J. L. Lebowitz, Phys. Rev. 133:A895 (1964). 
51, A. Vrij, J. Chem. Phys. 69:1742 (1978). 
52. C. G. de Kruif, W. J. Briels, R. P. May, and A. Vrij, Langmuir 4:668 (1988). 
53. J. L. Barrat and J. P. Hansen, J. Phys. (Paris) 47:1547 (1986). 
54. P. N. Pusey, J. Phys. (Paris) 48:709 (1987). 
55. W. Schaertl and H. Sillescu, to be published. 


